End-to-end RL Improves Dexterous Grasping Policies
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Fig. 1: We deploy our policy in the real world with varying lighting conditions. All of the objects in the above figure were
unseen during training.

Abstract— This work explores techniques to scale up
image-based end-to-end learning for dexterous grasping
with an arm + hand system. Unlike state-based RL, vision-
based RL is much more memory inefficient, resulting
in relatively low batch sizes, which is not amenable for
algorithms like PPO. Nevertheless, it is still an attractive
method as unlike the more commonly used techniques
which distill state-based policies into vision networks, end-
to-end RL can allow for emergent active vision behaviors.
We identify a key bottleneck in training these policies is
the way most existing simulators scale to multiple GPUs
using traditional data parallelism techniques. We propose a
new method where we disaggregate the simulator and RL
(both training and experience buffers) onto separate GPUs.
On a node with four GPUs, we have the simulator running
on three of them, and PPO running on the fourth. We are
able to show that with the same number of GPUs, we can
double the number of existing environments compared
to the previous baseline of standard data parallelism.
This allows us to train vision-based environments, end-
to-end with depth, which were previously performing far
worse with the baseline. We train and distill both depth
and state-based policies into stereo RGB networks and
show that depth distillation leads to better results, both
in simulation and reality. This improvement is likely due
to the observability gap between state and vision policies
which does not exist when distilling depth policies into
stereo RGB. We further show that the increased batch size
brought about by disaggregated simulation also improves
real world performance. When deploying in the real world,
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we improve upon the previous state-of-the-art vision-based
results using our end-to-end policies. More information can
be found at https://e2ed4robotics.com/,

I. INTRODUCTION

In robotics, crafting behaviours which exhibit a mix
of agility, reactivity, and dexterity when interacting with
the environment remains a longstanding goal. Recently,
reinforcement and imitation learning have emerged as
powerful paradigms for the training of robot policies.
For the vast majority of everyday tasks, endowing
policies with vision is a required component to sense the
environment and achieve the desired behaviour. In recent
years, visuomotor policy learning - learning policies
which take in a mix of visual and proprioceptive inputs
- has emerged as a powerful paradigm for the creation
of robotic policies for a wide variety of tasks [T} 2].
As part of this, so-called end-to-end methods of direct
processing of image to action have emerged as a useful
technique for representing policies, sidestepping the need
for explicit representations of the environment state [3].
Such methods usually take in raw RGB or depth camera
observations, and produce an action output that is the
result of processing using a neural network.

One popular approach to producing visual policies is
via distillation in simulation [4} [3, 6| [7, [8} ©]. In such
approaches, an expert policy, commonly known as the
"teacher", is learned, usually via Reinforcement Learning
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(RL), and then a downstream "student" policy is learned
by rolling out the policy and supervising its actions
based on the expert policy’s output. The advantage of
this method is that the student and the teacher do not
need to have the same inputs, allowing the practitioner
great flexibility in designing the input space and network
architecture for both the teacher RL training (where
it is possible to include privileged information only
available in the simulator, e.g. ground truth states) and
in the student during distillation. This way, the sample
inefficiency of RL is limited to just the privileged teacher
which is much easier than visual RL where the state space
is far more complex. This leads to a "factorization" of
the visuomotor learning process into behavior learning in
the first stage and representation learning in the second.
While convenient, this approach has several limitations.
Namely, it results in vision-based policies that learn
state-based behaviors. This is problematic because this
can create a partial observability problem whereby the
student has difficulty replicating the teacher actions.

A solution to this would be to simply train the
vision policy with RL. While this has been employed
for primitive grasping tasks [3, [10], it has yet to be
done for complex, dexterous manipulation tasks as the
sample complexity in pixel space is a lot higher. This
requires scaling up the number of simulated environments.
However, simulating batched rendering environments in
parallel is very memory intensive. This means that with-
out access to a large number of GPUs, it becomes difficult
to scale up the number of environments in order to train
such vision policies from scratch with RL. In order to
more efficiently utilize GPU memory, we take inspiration
from the disaggregated prefill and decode setups that are
used for modern day LLM inferencing [[11]]. We introduce
a disaggregated simulation and RL framework, which
separates RL experience buffers/training and simulation
environments onto separate GPUs. This allows us to
simulate twice as many environments compared to the
previous data parallelism baseline on the exact same
hardware setup. With this, we can train end-to-end depth
policies for a Kuka-Allegro robot setup to perform the
task of dexterous grasping. We distill these depth policies
into RGB policies which avoids the teacher-student
distillation gap previously seen with state-based teachers.
Ultimately, we find that in both simulation and the real
world, policies distilled from vision-based teachers are
more performant than policies distilled from state-based
ones. Figure [I] shows snippets of the robot grasping
various objects unseen during training.

II. RELATED WORK

Scaling frameworks for vision-based RL. There
are many existing simulators for robot learning that
support rendering such as Isaac Gym [12], Isaac Lab [13],

ManiSkill [14]], and MuJoCo [15]]. However, the current
paradigm with which they scale up RL is by using data
parallelism, which can be inefficient when it comes to
memory use as shown in Section [[II-B] Impala [16]
is a scalable distributed RL framework which hosts the
learner on a separate machine from the environment. The
limitation with this approach is that they also store the
trajectory on the same device that contains the environ-
ment which becomes expensive for vectorized simulators.
When applied to modern robotics simulators, this would
result in large experience buffers that cannot fit on the
same GPU without lowering the number of environments.
SEED RL [17] is a follow up work which stores the
trajectory on the same device as the learner. However,
their implementation is not tailored towards modern
robotics simulators which are vectorized for GPUs as
they built their distributed RL infrastructure around large
CPU clusters. Concretely, this means that their framework
is used in scenarios with very large number of CPUs,
each one simulating a few environments, whereas our
method for disaggregated simulation is meant to run on
GPU-accelerated simulators which require few replicas
as each GPU can simulate many more environments.
Lastly, they also do not demonstrate end-to-end learning
on robotics tasks that transfer to the real world.

Vision Based Grasping with Hands. There have
been several prior works for vision-based grasping
with multi-fingered hands. They can either learn from
depth/pointclouds [8 [18| [19] or through RGB [9]. While
the various implementation details differ among the
papers, the one common aspect is that they all leverage a
teacher-student distillation pipeline. The teacher policies
all operate on privileged information which is then
distilled into vision policies that operate in the real
world. This means that vision policies are trained to
mimic the behavior of privileged policies, which can
ultimately lead to suboptimal policy performance. This
is because the inability to reproduce teacher actions
can result in trajectories that diverge from those of the
teacher, which results in distributional shifts that can
lead to unrecoverable failures. Although there has been
previous work aiming to reduce this partial observability
gap [20, 211, there has not been much focus investigating
this for complex environments such as vision-based
dexterous grasping.

End-to-End Visuomotor Policies for Parallel Jaw
Grippers. Several works in the past have demonstrated
end-to-end grasping from RL using simple parallel jaw
grippers [22} 23| [3| [10, [24]. The reduced action space
brought by parallel jaw grippers makes the RL process
much easier than using hands. However, this morphology
can be limiting because they cannot achieve the same
types of stable grasps as multifingered hands [25].



III. METHOD
A. End-to-End RL

Vision-based policies are incredibly important for real-
world manipulation. However, training them directly
from RL has historically been challenging due to the
high sample complexity of image space. This has led to
two-stage methods gaining prominence whereby a state-
based teacher policy is trained with RL and then distilled
into a vision-based student policy. While this has led to
training successful policies, they fundamentally do not
learn vision-aware behaviors. For example, imagine a
robot arm trying to grasp an object. Suppose the arm is
currently occluding said object. The teacher policy, which
has access to the groundtruth object position, will simply
just pick it up. However, the student policy may struggle
to recreate this behavior as it has not learned to move
the arm out of the way in order to see the object. In such
cases, the student is trying to mimic state-based behaviors
while only having access to vision information which
causes it to act sub-optimally with respect to its inputs.
Therefore, end-to-end training, where the RL policy
learns directly from images, will lead to policy behaviors
that lend themselves better to their sensory modalities.
However, RGB end-to-end RL is much slower than depth-
based RL as the rendering process for accurate light
transport simulation is far more time consuming. Thus, a
suitable middle ground that meets the requirements above
while also being able to run on a reasonable hardware
budget is to train a depth based policy with RL, and
distill this into a stereo RGB-based policy in order to
deploy in the real world. This way, there is no theoretical
information gap between the student and the teacher.

B. Disaggregated Simulation and RL

When training end-to-end RL, it is important to scale
up the number of environments in order to get a reliable
learning signal. Scaling up reinforcement learning is
typically done through naive data parallelism. This
means that every GPU runs the simulator, stores the
RL experience buffers, and computes the gradients for
the actor and critic. After each instance calculates the
gradients, they are averaged across all GPUs in order to
obtain a less-noisy gradient estimate (see Fig [2a). When
performing end-to-end vision RL, the experience buffers
can balloon in size. For example, assuming depth maps
are represented using standard fp32 precision, storing
the experience across just 512 environments at 320x240
resolution for a relatively short horizon length of 16 steps
can take up to 2.5GB alone. The simulator will also start
to consume more memory as more environments are
added. Crucially, however; the simulator will take up a
non-trivial amount of memory that is not a function of
the number of environments which is typically used for
the asset cache. Therefore, naively running the simulator

Algorithm 1 Simulation Replica (GPU s € {0,1,2})

1: Given: learner id ¢ < 3, environment Env
2: obs + Env.Reset()

3: SENDTO(Y, obs)

4: while true do

5 actions < RECV(Y)
6: (obs, rew, dones) <— Env.Step(actions)
7 SENDTO(Y, (rew, dones, obs))

> send initial obs to learner

on every GPU is a suboptimal use of memory as each
copy will bring with it the same large asset cache.

A more optimal use of memory would involve limiting
the amount of GPUs that run the simulation, and ensuring
that the ones that are running simulation do not have to
also store RL experience buffers or network gradients.
We present our proposed disaggregated simulation and
RL setup in Fig 2b In a node of 4 GPUs, we run the
simulator on 3 of them, in order to fully maximize the
number of environments we can simulate, and on the 4th
GPU, we run RL training and store the experience buffers.
Psuedocode for how the different GPUs communicate
with each other is shown in Algorithms [T and [2]

It is important to maximize the number of environ-
ments because unlike traditional state-based environments
which can be scaled up to the point of PPO saturation
long before the GPU is out of memory, vision environ-
ments can be far more memory intensive. For example,
the state-based DextrAH task [8, 9], which involves
object grasping with a Kuka and Allegro hand-arm
system, can be reliably solved with 4096 environments
which only takes up 14GB of memory. In contrast,
the same task, when using 320x240 depth cameras,
will take up 44GB just to simulate 256 environments.
Thus, maximizing the number of environments becomes
crucial when trying to solve vision tasks with RL. Our
disaggregated method, as shown in Table [I] is able to
double the number of environments that are able to be
simulated on the exact same hardware.

TABLE I: Maximum concurrent environments on one 4-GPU
NVIDIA L40S node at various resolutions. Disaggregated
Simulation is able to more than double the number of simulated
environments on the same hardware compared to traditional
data parallelism.

Input resolution Data Parallel Disaggregated Simulation

1024 / GPU 2800 / GPU
160 x 120 (4096 total) (8400 total)
320 x 240 204 oPy 2100 o

(1024 total) (2100 total)

C. Training Environment

We use the same environment as in DextrAH-RGB [9]
and provide a brief summary of it here. The environment
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Fig. 2: Disaggregated simulation/learning pipeline. (a) The
standard data parallel setup when scaling up where every GPU
runs both simulation and RL; (b) our disaggregated simulation
setup where three GPUs purely run training and the last one
stores the experience buffers and runs RL.

consists of a 7 DoF Kuka iiwa arm and a 16 DoF
Allegro V4 hand. The policy is trained in simulation
to grasp and lift 140 different objects from the Visual
Dexterity dataset [26]. To help facilitate sim-to-real
transfer, we employ domain randomization on a set
of physics parameters such as joint friction, stiffness,
damping, mass, etc. This is implemented through a
method known as Automatic Domain Randomization
(ADR) [27, 9] which sets an initial randomization
range for the various physics parameters and gradually
increases the range towards the terminal range as the
policy becomes more proficient at grasping and lifting
the object. This is done to induce a curriculum onto
the environment that balances exploration early on in
training while ensuring robustness of the policy.

We train our depth-based policies end-to-end with
PPO [28]. Our network architecture comprises a 4-layer
CNN with [16, 32,64, 128] filters, layer normalization,
and ReLU activation function. The output of this is
passed into a fully connected layer which outputs
a 32 dimensional embedding for the depth. This is
combined with the proprioception of the robot and fed

Algorithm 2 Learner / Trainer (GPU 3)

1: Given: sim ids S « {0,1,2}, horizon H, policy 7
: for all s € S do
obs[s] + RECV(s)

W N

> initial obs
4: while true do
5 D+ 0 > trajectory buffer
6: for t =1to H do
7 actions < 7 (stack({obs[s]}ses))
8 for all s € S do
9

SENDTO(s, actions[s])

10: rew[s], dones[s], nextObs[s] <~ RECV(s)
11 D + D J{(obs, actions, rew, done)}
12: obs < nextObs

13: TRAINPPO(m, D)

into two LSTM layers with 1024 units, the output of
which is fed into a 3 layer fully-connected network
with [512,512,256] hidden units. This is in contrast to
IMPALA [16]] where the fully connected network is
placed before the LSTM. The architecture for the policy
is shown in Figure [3]

Proprioception —

B ow

Fig. 3: The image is first passed into a 4-layer CNN which
outputs a 32-dimensional embedding. This is concatenated with
the rest of the robot proprioceptive data and then fed through
to the LSTM and then MLP.

—— LSTM —— MLP
N/

We choose to not train direct end-to-end RGB policies
as realistic RGB rendering can be significantly more time
consuming than simple tiled depth rendering. However,
we still want to retain the benefits of RGB over depth as
shown in [9]. Thus, we chose to distill the depth policy
into a stereo RGB policy with the same architecture as [9].
The overall pipeline is shown in Figure @] Because depth
is recoverable from a stereo RGB pair, the behaviors
learned by a depth policy can theoretically be completely
replicated by a distilled stereo RGB policy. This is in
contrast with trying to imitate the behavior of a state-
based policy which has a much larger observation gap.
As shown in Section [IV] our method leads to improved
performance in both simulation and reality.

IV. RESULTS
We perform various experiments to demonstrate the

benefit of end-to-end RL to produce vision-based teachers
over the traditional factorization of state-based teachers
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Fig. 4: We first train our depth-based teacher policies end-
to-end using reinforcement learning. We then distill these
depth policies into stereo RGB. Lastly, these policies are then
deployed into the real world.

and vision-based students. We empirically verify both in
simulation and in reality the benefit of end-to-end RL on
success rates. We further show that our design choice of
disaggregated simulation helps improve batch size and
thus, downstream performance. All experiments are done
on a 4-GPU NVIDIA L40S node.

A. Disaggregated Simulation vs Data Parallelism

We verity the efficacy of our disaggregated simulation
setup by comparing it with data parallelism. For each
type of parallelism method, we run experiments at two
sets of resolutions: 160 x 120 and 320 x 240. For each
experiment, we run five different seeds and take the
average. For each resolution, we use the corresponding
number of environments as reported in Table [II The
results of this experiment are shown in Table [l The first
metric we report is the average portion of the terminal
domain randomization (DR) ranges that was achieved
by ADR. Since ADR increases the DR range towards
the terminal range when the success rate is at least
0.4, a higher value indicates that the policy was more
performant, causing ADR to increase the ranges more.
The second metric we track is the percentage of runs that
managed to reach the terminal ADR range. This metric
measures how reliable the training setup is in producing
performant policies. The last metric that we report is
the average success rate for all seeds that reached the
terminal ADR range. The success rate is defined as the
percentage of objects that have been grasped. After being
held in the air for 10 seconds, the environments will then
reset. For the 320 x 240 data parallel case, none of the
seeds reached the terminal DR range, so we report zero.

We see that across both resolutions, our disaggregated
simulation setup is able to offer superior performance
across all metrics when compared to the standard data-
parallelism solution that the other simulators utilize.
For the 160 x 120 resolution, not only are runs more
likely to reach their terminal DR ranges, but once they

TABLE II: Data Parallel (DP) vs Disaggregated Simulation
(Disagg) at 160 x 120 and 320 x 240 runs averaged across five
seeds. The first metric is the portion of the terminal DR ranges
that were achieved by ADR. The second metric is percentage
of seeds that reached the terminal DR ranges. The last metric
is the success rate, which measures the portion of environments
that have the object grasped in the air (note: if the object has
been grasped for 10 seconds, the environment is reset and the
object is placed back onto the table).

Res. Method ADR Inc. T % Full ADR 7 SR |
DP 0.38 20% 0.37
160 X 120 e 1.0 100%  0.42
DP 0.0 0% 0.00

do, they also display better grasping performance. For
320 x 240, it was impossible to train any policy to grasp
the objects when using data parallelism. This is likely
because the number of simulated environments goes
down by a factor of four which significantly constrains
the PPO batch size. Although our method is unable to
reliably train policies to reach their terminal ranges at
higher resolutions, it is still able to significantly improve
over the baseline. These results show that existing end-
to-end tasks are heavily constrained by the number of
environments that can be simulated. Thus, our method,
which doubles the number of environments that can be
simulated on the same hardware, directly contributes to
the improved performance of end-to-end vision-based
RL policy training.

B. Distilling State Teachers vs Depth Teachers

In order to test the hypothesis that vision teachers
offer superior performance to state teachers, we distill
both into stereo RGB students to compare the policy
performance. For each modality, we train 3 different
seeds. The depth teachers were trained as described in
Section [[II-C| with disaggregated simulation at 160 x 120
resolution to maximize the batch size for RL. The state
teachers were trained similar to previous work [8, [9]. In
those papers, the state teachers were given access to the
object pose and a one-hot vector that corresponds to the
object category as the observation. The success metric is
the percentage of objects that have been grasped into the
air. It is important to note that this is an instantaneous
metric and is not the success rate of picking up all
objects. Rather, this instantaneously measures how many
environments have lifted the object successfully in the air.
Once the object has been lifted in the air for two seconds,
the environment resets. A higher instantaneous success
rate means that the policy is faster and more adept at
grasping the object. The results of this experiment are
shown in Figure [3] It is clear from the plot that vision-
based teachers lead to better performance than state-based
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Fig. 5: The average performance of RGB students distilled from
vision-based teacher policies (blue) and state-based teacher
policies (red). It is clear from the plot that students perform
better when the teacher policy is also vision-based.

ones. This is because there is less of an information
asymmetry between the student and the teacher when
it also has to operate on vision input. This leads to the
students learning behaviors that are more congruent with
their modality. For example, with a depth teacher, the
student can learn to better deal with occlusions so as to
manipulate the object without significantly occluding it
from view of the camera.

C. Real World Benchmarking

We follow the bin packing evaluation protocol used
in [8 |9]. This benchmarking protocol involves placing
30 objects of varying size, shape, and weight on the
table and having the policy grasp it. The goal of this is
to assess the continuous performance of this task. We
leverage the same state-machine as prior work. In this,
the distilled policy also has an extra MLP head that
predicts the position of the object. During rollout, when
the object prediction head predicts the object to not be
sufficiently lifted in the air, the state machine executes the
policy’s actions onto the real robot in order to grasp the
object into the air. Once the predicted object position is
sufficiently high, the state-machine transitions to a fixed
motion to deposit the object in a bin before resetting
the pose of the arm and running the policy again. The
main metric we track is the success rate, which measures
what percentage of objects were successfully grasped
and deposited into the bin.

The results of this experiment are shown in Table [ITI}
The models trained from depth teachers outperformed all
other models using state-based teachers, demonstrating
that existing policies are often held back by the observ-
ability gap between the student and teachers. This shows
end-to-end RL as a promising step towards improving
robot policies. Furthermore, our policy with disaggre-
gated simulation performed the best, which shows that
increasing the batch size helps these vision policies.

This is likely because tiled rendering environments
are incredibly memory intensive which results in us
saturating GPU memory before saturating PPO with a
very large batch size.

TABLE III: Success rate by model.

Model Success Rate 1
DextrAH-G (state teacher) 87%
DextrAH-RGB (state teacher) 1%
Ours (depth teacher) 87%
Ours (depth teacher, disagg) 93%

V. CONCLUSION

In this work, we demonstrate a method for end-to-end
reinforcement learning with depth for dexterous grasping.
Contrary to the standard paradigm of training state-based
policies with RL and distilling them into vision-based
ones, we are able to train depth policies with RL and
distill them into RGB policies. We show that the lack of
an information gap when distilling these depth policies
results in better performance both in simulation and
real-world experiment. We also present a method for
efficiently training end-to-end RL policies with a low
number of GPUs.
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